BDNF Reduces Toxic Extrasynaptic NMDA Receptor Signaling via Synaptic NMDA Receptors and Nuclear-Calcium-Induced Transcription of inhba/Activin A.

نویسندگان

  • David Lau
  • C Peter Bengtson
  • Bettina Buchthal
  • Hilmar Bading
چکیده

The health of neurons is critically dependent on the relative signaling intensities of survival-promoting synaptic and death-inducing extrasynaptic NMDA receptors. Here, we show that BDNF is a regulator of this balance and promotes neuroprotection by reducing toxic NMDA receptor signaling. BDNF acts by initiating synaptic NMDA-receptor/nuclear-calcium-driven adaptogenomics, leading to increased expression of inhibin β-A (inhba). Inhibin β-A (its homodimer is known as activin A) in turn reduces neurotoxic extrasynaptic NMDA-receptor-mediated calcium influx, thereby shielding neurons against mitochondrial dysfunction, a major cause of excitotoxicity. Thus, BDNF induces acquired neuroprotection by enhancing synaptic activity and lowering extrasynaptic NMDA receptor death signaling through a nuclear calcium-inhibin β-A pathway. This process, which confers protection against ischemic brain damage in a mouse stroke model, may be compromised in Huntington's disease, Alzheimer's disease, or aging-related neurodegenerative conditions that are associated with reduced BDNF levels and/or enhanced extrasynaptic NMDA receptor signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extrasynaptic NMDA receptors: mediators of excitotoxic cell death

The N-methyl-D-aspartate (NMDA) type of glutamate receptor is a calcium-permeable ion channel with important functions in the physiology and pathology of the mammalian brain. NMDA receptors are critical for long-lasting, activity-induced changes in synaptic transmission, a process thought to be involved in learning and memory. NMDA receptors also control neuronal survival and cell death. How ca...

متن کامل

Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability.

Neuroprotection can be induced by low doses of NMDA, which activate both synaptic and extrasynaptic NMDA receptors. This is in apparent contradiction with our recent findings that extrasynaptic NMDA receptor signaling exerts a dominant inhibitory effect on prosurvival signaling from synaptic NMDA receptors. Here we report that exposure to low preconditioning doses of NMDA results in preferentia...

متن کامل

Hypoxic/ischemic conditions induce expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-D-aspartate receptors.

The stimulation of extrasynaptic N-methyl-D-aspartate (NMDA) receptors triggers cell death pathways and has been suggested to play a key role in cell degeneration and neuron loss associated with glutamate-induced excitotoxicity. In contrast, synaptic NMDA receptors promote neuronal survival. One mechanism through which extrasynaptic NMDA receptors damage neurons may involve Clca1, which encodes...

متن کامل

Caldendrin–Jacob: A Protein Liaison That Couples NMDA Receptor Signalling to the Nucleus

NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein ...

متن کامل

Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer's disease.

A direct relationship has been established between synaptic activity and amyloid-β secretion. Dysregulation of neuronal calcium homeostasis was shown to increase production of amyloid-β, contributing to the initiation of Alzheimer's disease. Among the different routes of Ca(2+) entry, N-methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are especially involved in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2015